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Abstract

Phonological rehearsal helps to keep selected information consciously in mind for further processing. This part of short-term storage
takes place during the delay period of verbal working memory tasks and involves a frontoparietal network as functional magnetic resonance
imaging (fMRI) studies have shown. The involved cortical areas can be further investigated by interfering with the local information
processing using transcranial magnetic stimulation (TMS). On a single subject level, we identified predominantly left-sided premotor,
prefrontal, and parietal areas active during the delay period of a verbal working memory task using event-related fMRI. In a pilot approach,
TMS was neuronavigated to the individually active areas by using a stereotaxic device. Then, TMS was applied during the delay period of
similar tasks as in fMRI. Error rates increased significantly upon stimulating left premotor cortex, but not upon parietal or prefrontal
stimulation. The contribution of the premotor cortex to storage and rehearsal is discussed as an active top-down storage process within th
frontoparietal network.
© 2003 Elsevier Inc. All rights reserved.

Introduction The central nervous processing of these functions can be
attributed to a frontoparietal network. Higher level execu-
Short-term maintenance of recently acquired information tive control has been ascribed to prefrontal areas like the
is essential for relating this information to internal goals and dorsolateral prefrontal cortex (DLPFC; Brodman areas
to upcoming events for decision making and acting. This [BA] 9, 46; Smith and Jonides, 1999; Fletcher and Henson,
working memory process is necessary for higher cognitive 2001). Rehearsal has been associated with premotor cortex
functions, ranging from maintaining the beginning of sen- (PMC; BA 6) and Broca’s area (BA 44; Awh et al., 1996;
tences while reading or listening, to integrating complex Smith and Jonides, 1999; Fiez et al., 1996; Henson et al.,
multimodal information for planning and problem solving 2000). Phonological storage has been found to involve pa-
(Cohen et al., 1997). One strategy for performing verbal rietal areas (Paulesu et al., 1993; Awh et al., 1996; Jonides
short-term maintenance is phonological rehearsal by usinget al., 1998). Verbal items are supposed to be processed
inner speech as a conscious and attention demanding propredominantly left-sided, and visuospatial material predom-
cess. Rehearsal and storage, as well as executive controlinantly right-sided (Smith and Jonides, 1999; Walter et al.,
encoding, and retrieval (Baddeley, 1992, 2000; Smith and 2003; Zurowski et al., 2002).
Jonides, 1997), are subroutines of verbal working memory.  Transcranial magnetic stimulation (TMS) can be used to
investigate cognitive functions and to prove hypotheses
_ _ _ gained from fMRI findings (Walsh and Cowey, 2000). TMS
~ Corresponding author. Department of Psychiatry, GPZ Hegibach. o0 4 oyer a cortical area has the property of interfering
University of Zirich, Minervastr. 145, Postfach 823, CH-803Zrich, . . ; . . . .
Switzerland. Fax:41-0-1-389-1468. noninvasively with the local information processing by in-
E-mail address: uwe.herwig@puk.zh.ch (U. Herwig). ducing neuronal depolarization. Stimulation can be applied
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during a certain task period in order to investigate the
chronological involvement of the stimulated area. Previous
studies have investigated DLPFC, but not PMC involve-
ment in working memory using TMS (e.g., Grafman et al.,
1994; Mottaghy et al., 2000; Mull and Seyal, 2001).

We studied cortical areas involved in the rehearsal pro-
cess within a delayed match-to-sample verbal working
memory task using fMRI and TMS. Using a neuronaviga-
tional device, the magnetic coil was guided individually to
prefrontal, premotor, and parietal areas as identified on a
single subject basis in prior fMRI. TMS was applied in the
second half of the 6-s delay period of the task, assuming to
mainly influence rehearsal. We hypothesized that TMS
would interfere with the local information processing and
disturb memory task performance.

Methods
Subjects

Nine healthy subjects took part in the study and gave
written informed consent. The study was approved by the
local ethics committee. Subjects were right-handed and did
not have a history of neuropsychiatric disorder, epilepsy,
brain injury or brain operations, or a cardiac pacemaker.

Sernberg item recognition task

The experimental trial for the fMRI scans consisted of
presentation, delay, and retrieval periods in two different
memory load conditions (one letter = L1, six letters = L6).
Subjects were presented a 2 X 3 array of six letters. Only
consonants were used to make formation of syllables un-
likely. The subjects were instructed to remember the yellow
letters, which were either one (L1) or all six (L6) of the set.
The duration of the presentation of L1 and L6 was adjusted
to the number of items. Given a baseline of 500 ms plus 500
ms for each |etter, presentation resulted in 1000 ms for L1
and 3500 ms for L6. The presentation was followed by a
blank screen with afixation crosslasting 6000 ms (“delay”).
In the following retrieval period of 1500 ms, subjects again
saw a2 X 3array asaprobe, consisting of red “#’ signs and
one yellow target letter. Subjects had to decide by pressing
“yes’ or “no” buttons whether this letter had been among
the letters to be memorized. Twenty-one trials each of the
L1 and the L6 condition were in one block, presented in
random order. In the fMRI scanner, each subject performed
two blocks resulting in atotal of 84 trials. For TMS, the L6
condition was presented in afirst approach; additionally we
used a similar paradigm with seven instead of six letters to
remember (Fig. 1) as outlined in the TM'S methods section.
The program for presentation was generated with ERTS
(Experimental Run Time System; Beringer Software, Ger-
many).

fMRI protocol

A 1,5 Tesa Magnetom VISION MRI scanner (Siemens,
Erlangen, Germany) was used to acquire T1 structural im-
ages (MPRAGE, 1 X 1 X 1 mm isotropic voxels) and
T2-weighted echoplanar imaging in axial orientation (ma-
trix: 64 X 64, 3.6 by 3.6 mm pixels, TE = 50 ms, TR =
2011 ms, 21 dlices per volume covering the whole cortex,
slice thickness 3 mm, distance factor 0.8, two sessions with
312 volume images each). The scanner was synchronized
with the presentation of thetrials. The onset of the trialswas
jittered in time with intertrial intervals between 1100 and
3550 ms. Within the scanner, stimuli were presented by
means of LCD video goggles (Resonance Technologies,
Cdlifornia).

Data were analyzed using the BrainVoyager Software
(Brainlnnovation, The Netherlands). Preprocessing con-
sisted of a dlice scan time correction, coregistration of the
functional images with the corresponding individua struc-
tural T1 volume, motion correction applying the least
square method, and high-pass filtering of the time series
across each session with a cutoff for frequency components
below three cycles within the time series. No smoothing was
administered for individual analyses of single subject data.
Voxel-wise analysis was performed using a general linear
model for autocorrelated observations. BOLD signal
changes were analyzed event-related for the delay period of
the task by testing with covariates that modeled the ex-
pected BOLD signal response in the event of an increase in
neural activity. Individual and group analyses were per-
formed. To assess delay period related activity we deter-
mined a contrast of the delay covariates of the L6 and the L1
condition, L1 serving as control.

Selection of sites for magnetic stimulation

Based on the single subject anayses we determined
activation sites for stimulation in each subject. In single
subjects analysis, voxels of which effects survived P values
of P < 0.05 in an F test were accepted when found in
clusters of at least 50 voxels (Table 1). In the case of higher
significant activities, the region for stimulation was selected
according to more conservative anaysis adjusting the
threshold up to P < 0.0001 (Table 1). Within an activated
voxel cluster, the coordinate of the maximally activated
voxel was identified, referring to the Talairach system after
morphing the brain into Talairach space. The anatomical
locations of the activities were verified according to the
Talairach atlas (Talairach and Tournoux, 1988). For the first
TMS sessions using the L6 task, we selected the stimulation
sites according to individually highest significance levels
within frontal or parietal cortex, resulting, for instance, in
inferior parietal and temporoparietal stimulation sites within
the group of parietal stimulations. For the additional L7
task, we focused the selection of the stimulation sites for
better comparison purposes onto the individual activations
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Presentation 3500 ms  Delay period 6000 ms  Retrieval 1500 ms
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Presentation 2500 ms  Delay period 6000 ms  Retrieval 2000 ms
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Fig. 1. Modified Sternberg verba working memory task: Upper row display of the six letter load condition (L 6), lower row load 7 condition (L7), with the different
periods following each other and their duration in milliseconds. TMS was applied during the second half of the delay period for 3000 ms (vertical signs).

Fig. 2. Neuronavigation according to fMRI data. Left: Presentation of the analysis in BrainVoyager in the different axes according to which the decisions
about the stimulation sites were made. The framed image in the lower |eft edge is the same as the lower right image but mirrored to neurological convention
in order to resembl e the screen presentation of the navigational device. The“V” indicates the site of verum stimulation above the active area, and “ C” indicates
the mirrored control stimulation. Right: Surgical Tool Navigator (STN) screen of the same subject while stimulating above the yellow marking according
to the individual fMRI result in the parietal cortex corresponding to “V”. The dotted green line runs perpendicular through the midpoint of the coil and
therefore represents the coils' peak magnetic field.

within distinct anatomical areas like the region of the in- cluded by decreasing the significance threshold to P = 0.05.

traparietal sulcus or the premotor cortex (Fig. 3). Siteswere In the rare case of contralateral activity, the significance

chosen for stimulation only if the activation was not bilat- level should differ by a factor of 100, and the stimulated

erally symmetrical. Relevant contralateral activity was ex- activity should have a multiple of voxels. The stimulation

Table 1

Individual fMRI data of the regions selected for L7 stimulation

Subject # 1 2 3 4 5 6

Tal. coord. PMC —47/0/25 —55/-9/25 —42/10/41 —55/9/28 —57/—2/24 —47/-1/40

Brodmen areas BA 6/44 BA 6/4 BA 6/9 BA 6/44 BAG BA 6/8/9

Sign. level P< 0.0005 0.0001 0.05 0.0001 0.0001 0.0001

Parietal —30/-53/58 —50/—48/46 —55/—49/32 —48/—31/53 —35/—55/43 —30/—54/54
BA7 BA7 BA 40 BA 40 BA7 BA7
0.0001 0.005 0.05 0.001 0.0001 0.0001

Note. Individual fMRI results selected as sites for the premotor and parietal stimulation during the seven letter task (L7) in the six subjects: Talairach
coordinates (x, y, ) of the maximally activated voxel, Brodman areas (BA) covered by the corresponding cluster, and significance levels (P values) in fMRI
activity according to which stimulation sites were selected.



Fig. 3. Individual fMRI results selected as stimulation sites: Premotor and parietal stimulation sites during the L7 task of the six individual subjects (from right to left)
as mentioned in Table 1. In the upper row, the time courses (in seconds, x axis) of the fMRI BOLD signal change of the activity (in percent, y axis) in the premotor
areas selected for stimulation are presented. The time between 0 and 6 seconds on the y axes represent the delay period. The two curves reflect the signal change in
the two fMRI trial blocks of the premotor activity. In the second row, the plots with the premotor activity in the transversal axis are shown (F = 25), with the stimulated
region indicated by the cross hair. In the third and fourth row, the plots of the parietal activity in the six subjects stimulated in the L7 tasks are shown.
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sites had to be accessible to TM S, meaning that the cortex
was within the range of the magnetic field without causing
unbearable discomfort.

Neuronavigation

A neuronavigational system (Surgical Tool Navigator,
Zeiss Oberkochen) was adapted to navigate the coil to the
individually determined cortical regions. Based on optically
tracked frameless stereotaxy, head fixation was avoided.
The method is described in detail in Herwig et a. (2001,
2002). In brief, the system enables monitoring of the posi-
tion of the coil in rea time on a computer screen in relation
to the brain which is visualized as structural T1 MRI (voxel
1X1X 1mm).

The transformation of the fMRI results onto the struc-
tural MRI for neuronavigation was performed by marking
the anatomical region of the fMRI cluster (Fig. 2a8) within
the structural MRI (Fig. 2b) using the markation tool of the
navigational software (STP4, Zeiss-Leibinger, Germany).
The cail, displayed on the screen by a dotted green line
running perpendicular through its midpoint, was then
guided to the center of the marking visible on the screen, so
that the cortical areaactive in fMRI was within the magnetic
field during TMS (Herwig et al., 2002).

Magnetic stimulation

Subjects were seated in a comfortable chair. Magnetic
stimulation was applied with a MagPro Stimulator (Dantec/
Medtronic) using a figure-8-coil (MC-B70). Motor thresh-
old (MT) was determined as lowest stimulation intensity for
evoking at least three MEPsin six stimulations of at least 50
nV recorded by a surface EMG (Keypoint Portable,
Medtronic) from the relaxed right M. abductor pollicis bre-
vis (Rossini et al., 1994). Stimulation parameters were
110% of individual MT, one train with 15 Hz for 3 s (45
stimuli). The intertrain interval was >15 s considering
safety criteria (Wassermann, 1998). Before beginning the
task, subjects received atest stimulation to get familiar with
stimulation conditions and side effects. The coil was ste-
reotactically guided to the cortical areas individually iden-
tified in prior fMRI and held tangentially to the skull with
the handle pointing in an anterior—caudal direction whereby
the LEDs on the coil were best detectable by the navigators
cameras. Stimulation was applied in the second half of the
6 s delay period, triggered by the ERTS program, because
stimulation of the whole delay period would have been
outside the safety criteria, and because a mgjor effect of
interference with pure rehearsal (assuming afinished encod-
ing) was expected for the period directly prior to recall
when ultrashort term sensory memory was assumed mostly
to be faded (Gazzaniga et al., 1998).

We applied “verum” stimulations above the areas active
in fMRI, and “control” stimulations above the mirrored

locations (same coordinates in y, z axes, x reversed) on the
other hemisphere (Fig. 2a). Additionally, in some sub-
jects, one block of sham stimulation was performed with
the coil held in midline 5 cm above the vertex, without
touching the skull. Sham stimulations were for technical
reasons not complete in the L7 task and not considered
for the analysis.

Initially, for the TMS trials, the same L6 paradigm asin
the MRI session was used. The L1 condition had served as
control in fMRI and was therefore not performed with TMS.
L6 above prefrontal and parietal cortex did not produce
sufficient errors (false answers given within the retrieval
period) in order to reveal a possible interference of TMS.
Hence, a follow-up TMS trial was generated consisting of
seven letters (L7). They were presented for 2500 ms and
arranged in line to rule out grouping effects, in order to
render the task more difficult (Fig. 1 lower-row). The re-
trieval period was extended to 2000 ms, because it was
found that 1500 ms resulted in invalid trials due to delayed
responses. All other conditions remained the same in both
L6 and L7 TMS task, included using the prior fMRI results
for navigation, assuming that principally the same cortical
regions were involved (Braver et a., 1997). In our first L6
TMS tridls, stimulation of DLPFC activities had turned out
to be uncomfortable, leading to possibly painful sensations,
to twitching of the eyes and trembling of the lower yaws in
most of the subjects. We considered this discomfort to be a
potential source of biasing results. Therefore we ceased
DLPFC stimulation with the L7 task. The parietal cortex
and the prominent and regular premotor cortical activity
sites in six subjects had been selected for the L7 task. The
selected areas were investigated with two blocks (42 single
runs) in the L6 condition and with one block (21 runs) in the
L7 condition. The sequence of the stimulation locations
(right and left parietal, right and left frontal, sham) was
pseudorandomized in order to rule out effects of learning/
fatiguing or habituation.

Satistical analysis

Reaction times and error rates of each single run were
recorded with ERTS. Wrong answers given within the re-
quired time were counted as errors. Forty-two single runs
for L6 and 21 runs for L7 were analyzed for each stimula-
tion location. In order to test an effect of stimulation on task
performance, a repeated measures multivariate analysis of
variance (MANOVA) was applied, considering error rate
and reaction time as dependent variables, and stimulation
condition (verum and control) and stimulated region (fron-
tal, parietal) as categorica factors (using Statistica 5.5,
Statsoft, Tulsa, OK, USA). When a dependence of the
variables to stimulation condition was detected, further
analysis was performed with Students' paired t test, one-
tailed according to the hypothesis.
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Results and discussion
fMRI results and selection of stimulation sites

The fMRI data of eight of the nine subjects (age 23-33,
mean 26; four females) were included (artifacts in one
subject). Therate of errors in the scanner during the L6 task
was 3.2%. The mean reaction time of correct answers was
907 ms (£156 ms). fMRI data were analyzed event-related
for the delay period on a single subject basis. Prominent
activities were detected in prefrontal, premotor, and parietal
regions, some hilaterally but predominantly left-sided (Ta-
ble 1 and Fig. 3). Activities accessible to TMS in one
subject were bilaterally symmetrical, and therefore the sub-
ject had to be excluded from TMS.

The subjects showed activity in anterior and/or dorsolat-
era prefrontal regions which covered overal Brodmann
areas (BA) 8, 9, 10, 44, 45, and 46. We found activity in the
region of the inferior parietal sulcus and/or the inferior
parietal lobe (BA 7/40), and temporoparietally. All subjects
had activity in the premotor cortex (PMC; BA 6), partly
combined with adjacent Broca s area (BA 44) activity. The
activated areas were |eft lateralized in all but one subject.

For L6 stimulation, the DLPFC (BA 9) in five subjects
(four left and one right sided) and the border to BA 6 in one
subject were chosen, as well as the most prominent activa-
tions in the inferior parietal areas of four subjects and
temporoparietally in two subjects. One subject refused L6
stimulation. In the subsequent L7 task, the activity present
in the left PMC of six subjects was targeted (Fig. 3, first two
rows), and in the same six subjects the inferior parietal
activity (one of the eight subjects refused, one had symmet-
rical activation) (Fig. 3, lower rows).

In the individual analysis, further activity was found in
the anterior cingulate, in supplementary motor regions, in
the primary motor cortex, in the temporosupramarginal re-
gion, and in occipital cortex. These activities were not
considered for stimulation, and hence are not reported in
detail here.

The group analysis, which was not used for the selection
of the stimulation sites, showed most prominent activity in
BA 6 covering the premotor cortex on the anterior edge of
lateral precentral gyrus (Fig. 4 and Table 2).

The fMRI results demonstrate the involvement of a pre-
dominantly left lateralized prefrontal—-premotor—parietal
network in rehearsal of verbal working memory. It is in
accordance to previous reports of working memory areas
identified by neurcimaging (Jonides et a., 1998; Postle et
al., 1999; Smith and Jonides, 1999; Henson et a., 2000).

Although fMRI data were gained using the L6 task, it is
in our view justifiable to use these results for targeting TMS
in the L7 task, because the fMRI analysis was designed to
reveal pure rehearsal activity in the delay period. This ac-
tivity is expected to be mainly similar for six or seven letters
concerning the involved areas (Braver et al., 1997).

Behavioral data during TMS

In six subjects, the left-sided regions active in the single
subjects’ fMRI in premotor and parietal cortex were stim-
ulated using the L7 task. This resulted for both areas in
higher error rates (PMC 14.3%, parietal 14.3%) as com-
pared to stimulation of the mirrored control site (PMC
9.5%, parietal 9.5%). This difference was significant for
stimulation of the PMC (Students' t test, one-tailed P =
0.02, Fig. 5), not for parietal stimulation (P = 0.14). The
reaction times did not differ comparing verum (PMC mean
815 + 103 ms, parietal 835 = 119 ms) and control (PMC
824 + 126 ms, parietal 828 £ 104 ms).

The prefrontal and parietal stimulation using the L6 task
did not show differences in error rates and reaction times
comparing verum and control. Subjective discomfort of
premotor “verum” and “control” stimulation was compara-
ble, so that the difference in error rates can hardly be
atributed to side effects. Serious side effects were not
observed.

Notably, the applied TMS protocol did not lead to dif-
ferent task performance comparing verum and control when
stimulating prefrontal areas using the L6 task, and parietal
areas in both tasks. We selected relatively high stimulation
parameters concerning the combination of intensity, fre-
guency, and train duration, while even lower parameters
have been suitable to interfere with working memory pro-
cesses (Grafman et a., 1994; Mottaghy et a., 2000; Mull
and Seyal, 2001; Oliveri et a., 2001; Kessels et al., 2000;
Rossi et al., 2001). The use of neuronavigation enabled the
spatialy precise stimulation of the individually preselected
DLPFC and parietal areas. Thus, an explanation for the lack
of interference may be a nonessential involvement of these
areas in the rehearsal period when applying the L6 task.

Premotor cortex

In fMRI, the most consistently and intensely activated
region was the left PMC. Higher error rates upon premotor
TMS in the second half of the task’s delay period support
the hypothesis of an involvement of the left premotor cortex
in rehearsal. Considering the small number of subjects, the
data are in line with fMRI studies showing premotor and
Broca's areas to host the process of verbal rehearsal (Hen-
son et a., 2000). Rehearsal involves inner speech which
engages mainly Broca's area (McGuire et al., 1996; Fiez et
al., 1996; Shergill et al., 2001) and which has been related
to conscious thinking processes (Tulving, 1987; Siegrist,
1995). Rehearsal within the memory process can be re-
garded in the frame of a premotor—parietal interaction. PMC
(and Broca's area) may project an inner speech based rep-
resentation of the remembered items in a continuous top-
down process to parietal areas. Thereby, parietal activity,
corresponding to the activity induced by prior perception of
the items to memorize, may be held online in order to bias
later recognition of the probe. This processing may occur
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Hand knob of motor cortex

Fig. 4. Surface-rendered and Talairach-size-morphed individual brain with indicated regions of BOLD activity in the group analysis during the delay period
of the working memory task (n = 6, P < 0.0001; see Table 2; contrast: L6 vs L1).

together with abottom-up information flow during encoding
and retrieval, unless on the executive level a decision about
matching is made and action is initiated. Disturbing the
rehearsal process by premotor stimulation may lead to loss
of this top-down information, resulting in a higher error
rate. An additiona influence of the premotor targeted stim-
ulation on the adjacent Broca's cortex cannot be totally
excluded.

One interpretation of the observed premotor disturbance
might be a disturbed preparation for the upcoming response
movement. Yet, this would not explain a parametric load
dependency of premotor and Broca' s area activity (Cohen et
al., 1997; Braver et al., 1997). This interpretation is further
ruled out by our fMRI findings contrasting high load and
one letter load condition, both requiring motor preparation.

Parietal cortex
According to the working memory model of Baddeley

(1992), a subvoca rehearsal process refreshes the phono-
logical buffer for short-term maintenance of phonological

information. The buffer for phonological storage has been
ascribed to posterior and inferior parietal areas (Jonides et
al., 1998). Parietal activity has further been attributed to the
recognition subtask within working memory (Becker et al.,
1999). The combination of rehearsal and recognition in-
volves a frontoparietal interaction including also PMC
(Jonides et al., 1998; Chein and Fiez, 2001). We may argue
that phonological storage or buffering in parietal areas
means top-down activation of internal representations of the
perceived and encoded items, in order to selectively attend
and recognize the anticipated target items by decoding vi-
sual input. Hence, the term storage may be midleading,
because the memorized items are not stored like books on a
shelf, but their experience-shaped neural network represen-
tation for perception is biased for recognition. It scemsto be
efficient to use existing internal representations for working
memory, indicated, for instance, by better memory perfor-
mance of familiar material.

The lacking TMS effect may be explained by the con-
tinuous top-down update, providing the information in pa-
rietal areasin the moment of required recognition. This may
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Table 2

fMRI data of the group analysis

Cortex area Hemisphere Tal. coord. No. of voxels
MFG, BA 9/10 Left —36/44/18 1674
MFG, BA 9/46 Left —41/20/31 1175
MFG, BA 9/46 Right 34/38/35 517
IFG/Ins., BA 45 Right 32/16/11 1789
PMC, BA 6/44 Left —46/2/29 6465
PMC, BA 6/4 Left —35/—8/57 2815
GC/SMA, BA 32/6 Bilat. 1/10/48 3015
GPO, BA 39/40 Left —51/-10/24 1016
STG, BA 22 Left —52/—-44]18 1827
I/IMTG, BA 37 Left —42/-51-2 4259
IPS, 7/40 Left —37/-54/56 1471
IPS, 7/40 Left —28/—55/35 602
IPS, 7/40 Left —48/—-38/48 90

Note. Activated regions in the group analysis during the delay period of
the working memory task (P < 0.0001, contrast: load with six letters vs
load with one letter). The coordinates of the strongest activated voxel
within an area are given, aswell asthe Brodman areas (BA) covered by the
whole extension of the activities. MFG, middle frontal gyrus: IFG/Ins.,
inferior frontal gyrus/insula; PMC, premotor cortex; GC/SMA, gyrus cin-
guli/supplementary motor area; GPO, parietooccipital area; STG, superior
temporal gyrus; I/IMTG, inferior/middlie temporal gyrus; IPS, area around
intraparietal sulcus.

compensate the parietal TMS during the delay period,
which cannot “delete” a store that is continuoudly filled
again. However, atechnical reason for nondisturbance may
be due to the fact that in some cases, activation was found
not to be at the cortical surface but deeper in brain such as
in the inferior parietal sulcus (Fig. 3). These activities may
not have been accessible by the electromagnetic field be-
cause of its limited range.

Prefrontal cortex

While prefrontal areas were active in fMRI during our
task, DLPFC stimulation did not disturb L6 task perfor-
mance comparing verum and control. Prefrontal areas like
DLPFC and ventrolateral PFC, interacting with distinct sub-
functions on the executive level, may control and initiate the
general process of working memory performance and hold
the nonmaterial specific context and the rules to be consid-
ered online (Wagner et al., 2001; Fletcher and Henson,
2001; Newman et al., 2002). The DLPFC is more strongly
activated in dua tasks (D’ Esposito et al., 1995; Koechlin et
al., 1999), when interfering tasks like “n”-back working
memory paradigms are performed (Braver et al., 1997), or
when distracting stimuli are to be managed (Sakai et al.,
2002). The DLPFC may be less essentialy involved in
simple maintenance, but more in encoding and retrieval
(Rypma and D’Esposito, 1999; D’Esposito et al., 1999b),
and when manipulation of the itemsis required (D’ Esposito
et al., 1999a). However, an increasing DLPFC activity has
been reported with increasingly longer maintenance periods
(Barch et d., 1997). The prefrontal areas thus may not

represent the storage level of specific itemsto be memorized
but may initiate and monitor the task by “delegating” former
performance to next levelslike the PMC. Hence, because no
task interferences or conflicts had to be managed in our task,
alow prefrontal involvement may account for the missing
effect of DLPFC stimulation at the L6 level. There may also
be well-functioning compensatory mechanisms of these re-
gions by, for instance, recruiting the other hemisphere
(Newman et a., 2002).

TMS in working memory studies

In contrast to our data, effects on task performance,
particularly by DLPFC stimulation, have been reported by
other authors using TMS to study verbal working memory.
Encoding was reported to be disturbed by stimulating with
20 Hz for 500 ms beginning 250 ms after word presentation
above left temporal cortex and left and right DLPFC (Graf-
man et a., 1994). Suprathreshold single pulse TMS during
the encoding within a 3-back working memory task 400 ms
after each letter presentation lead to an impairment of per-
formance after left, not after right DL PFC stimulation (Mull
and Seyal, 2001).

Repetitive TMS was applied with 4 Hz at 110% motor
threshold continuously during a 2-back working memory
task (Mottaghy et al., 2000). A higher error rate was ob-
served when stimulating above right and above left DLPFC
compared to stimulating above the vertex, or performing the
task without stimulation. A delayed response task demon-
strated an increased error rate when stimulating repetitively
above left and right DLPFC during the delay period com-
pared to a stimulation above motor cortex or without stim-
ulation (Pascual-Leone and Hallett, 1994). However, both
latter tasks did not consider possible influence of side ef-
fects of the much more uncomfortable DLPFC stimulation
compared to their sham conditions. Our control condition

25 .

20 |
15 |
10 | )p

control

error rates in percent

verum

Fig. 5. Error rates during premotor stimulation: Individual error rates of the
six different subjects (open dots) and the according mean (filled dots).
“Verum” corresponds to the stimulation above left premotor cortex. “Con-
trol” means mirrored stimulation (inverse of x coordinate, same y, and z
coordinate) above the right PMC.
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involved a mirrored stimulation of the nonactive hemi-
sphere in order to balance the influence of side effects,
which are of considerable magnitude (Abler et a., in prep-
aration). The n-back studies (Mottaghy et al., 2000; Mull
and Seyal, 2001) showing interference effects when stimu-
lating above the DLPFC, differ from our study, as n-back
designs involve manipulation that recruits the DLPFC
(D’Esposito et a., 1999a) and not solely maintenance as in
our task. This may account for the different findings.

Conclusion

Our data add to the evidence for an interactive role of
prefrontal, premotor, and parietal areas in rehearsa and
storage during verbal working memory. Prefrontal areas
such as the DLPFC may be involved on a general executive
level and in encoding the task relevant material. The PMC
appears to be centrally involved by providing phonological
information to parietal areas. The concept of phonological
storage can be viewed as a premotor mediated top-down
activation of the interna representation of the memorized
items in parietal areas for later recognition.
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